
IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 1

MATLAB PROGRAMMING
I M.Sc.,(Mathematics)

Code: MMAF181P50

Lecture Notes

Dr.K.Srinivasa Rao
Professor & Head

Department of Mathematics

Sri Chandra Sekharendra Saraswathi Viswa Mahavidyalaya

Enathur, Kanchipuram, Tamilnadu

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 2

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 3

1. GETTING STARTED WITH MATLAB

What Is MATLAB?

MATLAB is an efficient user-friendly interactive software package, which is very effective

for solving engineering, mathematical, and system problems.

MATLAB Windows

The assumption here is that the reader is sitting in front of an active computer and

MATLAB is installed. To begin MATLAB, double click the MATLAB icon on the

computer’s desktop or select MATLAB from the Start or Program menu. Immediately a

special window called the MATLAB desktop appears as below.

The MATLAB desktop consists of the following components:

1. Command Window

2. Command History

3. Workspace

4. Current Directory

5. Help Browser

6. Start Button

The command window is a place where certain basic operations like simple mathematical

calculations can be easily performed. The difficulty with command prompt is that

previously typed lines cannot be modified.

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 4

Command history provides all the details of the functions typed and codes executed from

the command prompt in the recent past.

Workspace includes the names of variables generated during the running of certain

functions or codes. It also includes details regarding the size and types of variables

generated.

The current directory shows the location where the program is held or the directory from

where the current execution is running. Work folder in the drive where MATLAB is

installed is the default folder where programs are stored.

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 5

Help browser is the way to go through the details of the documentation made available

with MATLAB.

The prompt >> is the program prompt indicating that you are in the MATLAB

environment. Each instruction line in the command window begins with a prompt (>>),

which is automatically inserted by MATLAB. An instruction is executed after pressing the

enter key. The result of a command appears on the next line. The result can be

 A MATLAB output

 A MATLAB prompt, meaning that the instruction was executed and MATLAB is

waiting for the next command

 An error message

The following examples indicates the input-output relations of MATLAB and its response

A MATLAB output

>> A=6*9  input by user

A =
  output by MATLAB
 54

>>  waiting for the next command

A MATLAB prompt, meaning that the instruction was executed and MATLAB is waiting for

the next command

>> A=6*9;  input by user

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 6

>>  waiting for the next command (meaning that command is executed)

An error message

>> sin5

??? Undefined function or variable 'sin5'.

This activity of entering and executing commands is carried out in the main window (called

command window) and is used to enter single line commands only. Besides the main

window, there are two more windows are interest that are defined as follows:

 The figure window, which is used to display graphs and plots executed by a program

entered at the command window

 The editor or debugger window is the place where program are created and

modified. These programs can be saved in the form of files

When the user first enters MATLAB, the main program window or command window is

active. The edit window is used only when a program is created or modified and then

stored in a file. The graphic or figure window is created when plots are generated as a

result of executing a set of instructions.

Version of a MATLAB: In this workshop we are using R2007b (7.5.0) version but the latest
version available is R2019b (Version 9.7) - Released on 11th September, 2019. To know the
version of MATLAB, enter the following command in the command window.

>> version

ans =

7.5.0.342 (R2007b)

The command ver gives complete details of the version as shown in below

>> ver

MATLAB Operations:

Symbol Operation Example Answer
+ Addition Z= 6+3 Z=9
- Subtraction Z=6-3 Z=3
/ Right division Z=6/3 Z=2
\ Left division Z=3\6 Z=2
* Multiplication Z=6*3 Z=18
^ Exponentiation Z=6^3 Z=216

The hierarchy of operations is as follows

(i) Functions such as sqrt(x), log(x), and exp(x) , etc
(ii) Exponentiation (^)

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 7

(iii) Products and division (*, /)
(iv) Addition and subtraction (+,-)

Difference between the commands home, clc and clear

>>home

home moves the cursor to the upper-left corner of the Command Window. You can use the
scroll bar to see the history of previous functions.

>> clc

clc clears all input and output from the Command Window display, giving you a "clean+
screen."

After using clc, you cannot use the scroll bar to see the history of functions, but you still can
use the up arrow to recall statements from the command history.

>>clear

clear removes all variables from the workspace. This frees up system memory.

Display Format of Numbers:

It always attempts to display integers (whole numbers) exactly. However, if the integer is

too large, it is displayed in scientific notation with five significant digits, e.g. 1234567890 is

displayed as 1.2346e+009 (i.e. 1.2346×109). Check this by first entering 123456789 at the

command line, and then 1234567890.

Numbers with decimal parts are displayed with four significant digits. If the value x is in the

range 0.001 1000x  it is displayed in fixed point form, otherwise scientific (floating

point) notation is used, in which case the mantissa is between 1and 9.9999, e.g. 1000.1 is

displayed as 1.0001e+003. Check this by entering following numbers at the prompt (on

separate lines): 0.0011, 0.0009, 1/3, 5/3, 2999/3, 3001/3

This is what is called the default format, i.e. what normally happens. However, you can

change from the default with variations on the format command, as follows. If you want

values displayed in scientific notation (floating point form) whatever their size, enter the

command

format short e

All output from subsequent display statements will be in scientific notation with five

significant digits, until the next format command is issued. Enter this command and check

it with the following values: 0.0123456, 1.23456, 123.456 (all on separate lines). If you

want more accurate output, you can use

format long e

This also gives scientific notation, but with 15 significant digits. Try it out on 1/7.

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 8

Use format long to get fixed point notation with 15 significant digits, e.g. try 100/7 and pi.

If you’re not sure of the order of magnitude of your output you can try format short g or

format long g. The g stands for ‘general’. MATLAB decides in each case whether to use fixed

or floating point. Use format bank for financial calculations; you get fixed point with two

decimal digits (for the cents). Try it on 10000/7.

Use format hex to get hexadecimal display.

Use format rat to display a number as a rational approximation (ratio of two integers), e.g.

pi is displayed as 355/113, a pleasant change from the tired old 22/7. Please note that even

this is an approximation! Try out format rat on √2 ande (exp(1)). The symbols + , - and a

space are displayed for positive, negative and zero elements of a vector or matrix after the

command format +. In certain applications this is a convenient way of displaying matrices.

The command format by itself reverts to the default format. You can always try help format

if you are confused!

Format Short, Format Long, Format Bank & Format Rat

We can change the format to format long by typing

>>format long

View the result of value of by typing

>>sqrt(3)

ans =

 1.732050807568877

When the format is set to format short

>>format short

>> sqrt(3)

ans =

 1.7321

When the format is set to format bank

>>format bank

>> sqrt(3)

ans =

 1.73

When the format is set to format rat

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 9

>> format rat

>> sqrt(3)

ans =

 1351/780

Note : The format function affects only how numbers are displayed, not how MATLAB
computes or saves them.

Difference between commands fix, round, ceil and floor

>> round(6.628)

ans =

 7 % round command rounds the element of x to towards nearest integer

>> fix(6.628)

ans =

 6 % fix command rounds the element x to nearest integer towards zero

>> ceil(6.628)

ans =

 7 % ceil command rounds the element x to nearest integer towards infinity

>> floor(6.628)

ans =

 6

% floor command rounds the element x to nearest integer towards minus infinity

Worksheet-I

Calculate the following values using Matlab

1.
83 9 2.

24 7 3.

5

6

2

2 1 4.
125

10log
 5.

10loge

6. cos(/ 4) 7.
2sin (/ 3) 8.

5e 9.
5

loge

e

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 10

2. MATRICES & ARRAYS

The basic element in MATLAB is the matrix. The name MATLAB stands for Matrix
Laboratory, and the language syntax and commands are based on matrix (arrays)
operations and their extensions. Matrices and arrays are the fundamental representation of
information and data in MATLAB. You can create common arrays and grids, combine
existing arrays, manipulate an array's shape and content, and use indexing to access array
elements.

Arrays:

>>X=[1 -2 3 8 2 9] %Displays row vector or row matrix

X =

 1 -2 3 8 2 9

>> Y=[0 5 9 7 -6 2];

>> X.*Y % Performs point wise multiplication

ans =

 0 -10 27 56 -12 18

>> X.^2

ans =

 1 4 9 64 4 81

>> X=[1 -2 9 8 2 9]

X =

 1 -2 9 8 2 9

>> sqrt(X) % Displays square root of each element of X

>> 1./X % Displays reciprocal of X

>> 2.^X

ans =

 2.0000 0.2500 512.0000 256.0000 4.0000 512.0000

>> max(X) %Displays maximum element in the vector

ans =

 9

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 11

>> [Xmax,Xinde]=max(X) % Displays maximum element and position

Xmax =

 9

Xinde =

 3

>> find(X==max(X)) % Displays positions of the maximum element

ans =

 3 6

>> a=0:10 % Displays array starting point 0 with increment 1 up to 10

a =

 0 1 2 3 4 5 6 7 8 9 10

>> a=0:2:10 % Displays array starting point 0 with increment 2 up to 10

a =

 0 2 4 6 8 10

>> a=linspace(1,10) % Displays 100 equally spaced points between 1 and 10

including 1 and 10

>> size(a)

ans =

1 100

>> a=linspace(1,10, 20) % Displays 20 equally spaced points between 1 and 10

>> size(a)

ans =

1 20

> sum(a)

ans =

 110

>> prod(a)

ans =

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 12

 2.2091e+013

>> mean(a)

ans =

 5.5000

>> var(a)

ans =

 7.8532

>> std(a)

ans =

 2.8024

>> median(a)

ans =

 5.5000

>> mode(a)

ans =

 1

>> a(10) % Display the 10th element of a

ans =

 5.2632

>> a(end) % Displays last element of a

>> a(10)=0; % Replaces 10th element by 0

>> a(1:3) % First three elements will be displayed

>> a(1:2:end) % Odd indexed elements will be displayed

Worksheet-II

Write a MATLAB program to find a factorial of n. (For example, write a program to find n!

for given n=15).

Write a MATLAB program that returns a sequence of first 50 even numbers and find sum

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 13

Write a MATLAB program that returns a sequence, consists of sequence of square of first 50

even numbers and find sum

Write a MATLAB program to find , for a=0.5; N=11 and N=21

Write a MATLAB program that adds all elements of X with even indexes (Here x is vector

containing particular number of elements).

Matrices:

>> A=[1 1 3;1 5 1;3 1 1]

A =

 1 1 3

 1 5 1

 3 1 1

>> m= size(A) % Assigns dimension to m

m =

 3 3

>> det(A) % Calculates the determinant of A

ans =

 -36

>>rank(A) % Calculates the rank of A

ans =

 3

>> diag(A) %Displays the principal diagonal elements of A

ans =

 1

 5

 1

>> trace(A) % Displays the sum of the principal diagonal elements of A

ans =

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 14

 7

>> A' % Displays the transpose of A

ans =

 1 1 3

 1 5 1

 3 1 1

>> B=A^2

B =

 11 9 7

 9 27 9

 7 9 11

>> A^-1 %Displays the inverse of A

ans =

 -0.1111 -0.0556 0.3889

 -0.0556 0.2222 -0.0556

 0.3889 -0.0556 -0.1111

>> C=A+B

C =

 12 10 10
 10 32 10
 10 10 12

>> D=A*B
D =

 41 63 49
 63 153 63
 49 63 41
>> E=A.*B % Element wise multiplication of A and B

E =

 11 9 21

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 15

 9 135 9
 21 9 11

>> A+2

ans =

 3 3 5

 3 7 3

 5 3 3

>> 3*A

ans =

 3 3 9

 3 15 3

 9 3 3

>> A/4

ans =

 0.2500 0.2500 0.7500

 0.2500 1.2500 0.2500

 0.7500 0.2500 0.2500

>> 1./A

ans =

 1.0000 1.0000 0.3333

 1.0000 0.2000 1.0000

 0.3333 1.0000 1.0000

>> A./B % Element wise division

ans =

 0.0909 0.1111 0.4286

 0.1111 0.1852 0.1111

 0.4286 0.1111 0.0909

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 16

B.^A % Element wise exponential

ans =

 11 9 343

 9 14348907 9

 343 9 11

>> X=[A B] % Horizontal concatenation

X =

 1 1 3 11 9 7

 1 5 1 9 27 9

 3 1 1 7 9 11

>> Y=[A;B] % Vertical concatenation

Y =

 1 1 3

 1 5 1

 3 1 1

 11 9 7

 9 27 9

 7 9 11

>> poly(A) % Displays the coefficients of characteristic polynomial.

ans =

 1.0000 -7.0000 -0.0000 36.0000

>> roots(poly(A)) % Displays the roots of the characteristic equation

ans =

 6.0000

 3.0000

 -2.0000

>> eig(A) % Displays the Eigen Values of A

ans =

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 17

 -2.0000

 3.0000

 6.0000

>> [V D]=eig(A) % Displays the Eigen vectors as columns of V, Eigen

values

 are diagonal elements of D

V =

 -0.7071 0.5774 0.4082

 -0.0000 -0.5774 0.8165

 0.7071 0.5774 0.4082

D =

 -2.0000 0 0

 0 3.0000 0

 0 0 6.0000

Linear Indexing:

With MATLAB, you can refer to the elements of a matrix with a single subscript, A(k).

MATLAB stores matrices and arrays not in the shape that they appear when displayed in

the MATLAB Command Window, but as a single column of elements. This single column is

composed of all of the columns from the matrix, each appended to the last. So, matrix A

>>A = [2 6 9; 4 2 8; 3 5 1]

A =

 2 6 9

 4 2 8

 3 5 1

is actually stored in memory as the sequence 2, 4, 3, 6, 2, 5, 9, 8, 1.

The element at row 3, column 2 of matrix A (value = 5) can also be identified as element 6

in the actual storage sequence. To access this element, you have a choice of using the

standard A(3,2) syntax, or you can use A(6), which is referred to as linear indexing.

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 18

>> A(6)

Ans=

 5

>> A(3,2) % Displays second row, second column element of A

ans =

 5

>> A(:,2) % Displays second column of A

ans =

 6

 2

 5

>> A(1,:) % Displays first row of A

ans =

 2 6 9

>> A(2,3)=-6 % Replaces A(2,3) element by -6

A =

 2 6 9

 4 2 -6

 3 5 1

>> A([1 6 8])=[-1 -2 -3]

A =

 -1 6 9

 4 2 -3

 3 -2 1

>> A(3,:)=[1 0 1] % Replaces 3rd row of A by [1 0 1]

A =

 2 6 9

 4 2 -6

 1 0 1

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 19

Special Matrices

>> ones(5)

ans =

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

 1 1 1 1 1

>> ones(2,3)

ans =

 1 1 1

 1 1 1

>> zeros(3,2)

ans =

 0 0

 0 0

 0 0

The command eye(N) displays the N-by-N identity matrix and eye(M,N) or eye([M,N])

displays an M-by-N matrix with 1's on the diagonal and zeros elsewhere. For example the

command eye(3) displays the following output.

 1 0 0

 0 1 0

 0 0 1

>> eye(4,3)

ans =

 1 0 0

 0 1 0

 0 0 1

 0 0 0

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 20

>> eye(3,4)

ans =

 1 0 0 0

 0 1 0 0

 0 0 1 0

R = rand(N) returns an N-by-N matrix containing random values drawn from the interval

[0,1]. For example the command A=rand(5) gives the following output

A =

 0.8147 0.0975 0.1576 0.1419 0.6557

 0.9058 0.2785 0.9706 0.4218 0.0357

 0.1270 0.5469 0.9572 0.9157 0.8491

 0.9134 0.9575 0.4854 0.7922 0.9340

 0.6324 0.9649 0.8003 0.9595 0.6787

>> A=rand(2,4)

A =

 0.7577 0.3922 0.1712 0.0318

 0.7431 0.6555 0.7060 0.2769

repmat replicate and tile an array. B = repmat(A,M,N) creates a large matrix B consisting

of an M-by-N tiling of copies of A. The size of B is [size(A,1)*M, size(A,2)*N]. The statement

repmat(A,N) creates an N-by-N tiling. For example the command repmat(eye(3),2,3) gives

the following output

 1 0 0 1 0 0 1 0 0

 0 1 0 0 1 0 0 1 0

 0 0 1 0 0 1 0 0 1

 1 0 0 1 0 0 1 0 0

 0 1 0 0 1 0 0 1 0

 0 0 1 0 0 1 0 0 1

In the command repmat(A,r,c) , A can be scalar, vector, or matrix; r is the number of times

the rows of A will be replicated; c is the number of times the columns of A will be

replicated.

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 21

Removing Rows and Columns:

The easiest way to remove a row or column from a matrix is to set that row or column

equal to a pair of empty square brackets [].

>> p=round(100*rand(6))

p =

 49 39 96 2 45 18

 34 24 58 4 55 37

 90 40 6 17 30 63

 37 10 23 65 74 78

 11 13 35 73 19 8

 78 94 82 65 69 93

>> p(:,[1 4])=[]

p =

 39 96 45 18

 24 58 55 37

 40 6 30 63

 10 23 74 78

 13 35 19 8

 94 82 69 93

>>p([2 3], :)=[]

p =

 39 96 45 18

 10 23 74 78

 13 35 19 8

 94 82 69 93

>> p<25

ans =

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 22

 0 0 0 1

 1 1 0 0

 1 0 1 1

 0 0 0 0

>>ind=find(p<25))

ind =

 2

 3

 6

 11

 13

 15

>>p(p<25)=10

p =

 39 96 45 10

 10 10 74 78

 10 35 10 10

 94 82 69 93

Swapping Rows and Columns: We can swap the elements in array. For example,

>> s=[8 9 4 15 4 7 10];

>> r=s([2 1 3 4 5 6 7])

r =

 9 8 4 15 4 7 10

>> p(:,[2 1 3 4])

ans =

 96 39 45 10

 10 10 74 78

 35 10 10 10

 82 94 69 93

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 23

>> p([1 2 4 3],[2 1 3 4])

ans =

 96 39 45 10
 10 10 74 78
 82 94 69 93
 35 10 10 10

Sorting:

For vectors, sort(X) sorts the elements of X in ascending order and for matrices, sort(X)

sorts each column of X in ascending order.

>> m=[28 3 5 -10 0 6 4 3];

>> sort(m)

ans =

 -10 0 3 3 5 6 28

>>[n ind]=sort(m)

n =

 -10 0 3 3 5 6 28

ind =

 4 5 2 7 3 6 1

>> sort(m,'descend')

ans =

 28 6 5 3 3 0 -10

 The following example sorts each column of a matrix ‘g’ in ascending order.

>> g=round(100*rand(6))

g =

 78 51 53 59 19 92

 49 82 35 21 23 43

 44 79 94 30 17 18

 45 64 88 47 23 90

 31 38 55 23 44 98

 51 81 62 84 31 44

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 24

>> sort(g) % Same as sort(g,1)

ans =

 31 38 35 21 17 18

 44 51 53 23 19 43

 45 64 55 30 23 44

 49 79 62 47 23 90

 51 81 88 59 31 92

 78 82 94 84 44 98

>> sort(g,2) or sortrows(g) % Sorts row wise

ans =

 19 51 53 59 78 92

 21 23 35 43 49 82

 17 18 30 44 79 94

 23 45 47 64 88 90

 23 31 38 44 55 98

 31 44 51 62 81 84

The following commands sorts each columns (rows) of a matrix ‘g’ in descending order.

>> sort(g, 'descend');

>> sort(g, 2, 'descend');

Worksheet-III

1. Write a MATLAB program that returns 6x6 random matrix C with random elements

consists of integers between 1 and 100

2. Determine the main diagonal of C

3. The sum and product of the elements of the main diagonal of C

4. The average of the elements of the main diagonal of C

5. The maximum and minimum values of the elements and corresponding indices on

the main diagonal of C

6. Find rank and determinant of C

7. Inverse and transpose of C

8. Square each element of C

9. Display the second row of C

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 25

10. Display second fourth and fifth rows

11. Reshape the matrix C into a 4X9 and 9x4 matrices

12. The matrix consisting of the square root of each element of C

13. Replace the (2,3) element of C by -7 and name the new matrix as D

14. Replace the 5th row by [1 0 1 0 1] and name the new matrix by E

15. Write MATLAB program to find 8!

16. Create two matrices P and Q each of size 2X5

17. Perform horizontal concatenation

18. Perform vertical concatenation

19. Create an array S of size 1x10 with arbitrary elements

20. Display even index elements of S by a command

21. Replace 5th element of S by -100

22. Create a matrix T of size 2 x3 with arbitrary elements and perform command

repmat (T,2,4) and observe the out put

Solution of system of Equations:

Consider the system of equations

x+y+z=3;

2x+y-z=2;

4x-y+2z=5

The above system can be written in matrix form as AX=B, where and

B=

We can easily solve the system using the command A\B

>> A=[1 1 1;2 1 -1;4 -1 2]; B=[3 2 5]';

>> X=A\B

X =

 1

 1

 1

Another method to solve the system is using the command (A^-1)*B

>> X=A^-1*B

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 26

X =

 1.0000

 1.0000

 1.0000

Another method to solve system is based on Gauss Jordan elimination with partial pivoting.

The command rref([A B]), produces the reduced row echelon form of A.

X=rref([A B])

X =

 1 0 0 1

 0 1 0 1

 0 0 1 1

LU Decomposition

A square matrix A can be factorized into lower(L) and upper(U) triangular matrices, when

possible, by using the following command, where L*U=A

>> [L U]=lu(A)

L =

 0.3333 0.1429 1.0000

 0.3333 1.0000 0

 1.0000 0 0

U =

 3.0000 1.0000 1.0000

 0 4.6667 0.6667

 0 0 2.5714

>> L*U

 1.0000 1.0000 3.0000

 1.0000 5.0000 1.0000

 3.0000 1.0000 1.0000

Programming using trigonometric functions:

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 27

Syntax Trigonometric function
Sin Sine
Sinh Hyperbolic sine
Asin Inverse sine
Asinh Inverse hyperbolic sine
Cos Cosine
Acos Inverse cosine
Acosh Inverse hyperbolic cosine
Tan Tangent
Atan Inverse tangent
Atanh Inverse hyperbolic

tangent
Sec Secant
Csc Cosecant

Programming using exponential functions

Exp Exponential
Log Natural logarithm
log(10) Common(base10) logarithm
Sqrt Square root

Anonymous Functions:

An anonymous function is a function of one or more variables that you create on the

command line for subsequent evaluations. Such a function especially useful if you need to

evaluate the function several times (with different output, especially in MATLAB

programming) during a single MATALB session and you do not care to code it in a function

file and save later use.

The syntax is

 fn_name=@(variables) function expression

>> f=@(x) x*cos(x)-x*log(x+10)+100

f =

 @(x)x*cos(x)-x*log(x+10)+100

>> f(1)

ans =

 98.1424

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 28

>> values=[f(0) f(1) f(2) f(3)]

values =

 100.0000 98.1424 94.1979 89.3352

>>g=@(x,y) x.*cos(y)+x.^2+y+1;

>> x=1:0.5:4; y=2:0.5:5;

>>g(x,y)

ans =

3.5839 4.5483 6.0200 8.4089 12.0391 17.0122

23.1346

Worksheet-IV

The following exercises are meant to be answered by a single MATLAB command. The

command may be involved (i.e., it may use a number of parentheses or calls to functions)

but can, in essence, be solved by the execution of a single command. If the command is too

complicated, feel free to break it up over two or more lines.

Create a vector of the even numbers between 31 and 75.

Let x = [2 5 1 6].

a. Add 16 to each element

b. Add 3 to just the odd-index elements

c. Compute the square root of each element

d. Compute the square of each element

Let x = [3 2 6 8]' and y = [4 1 3 5]' (NB. x and y should be column vectors).

a. Add the sum of the elements in x to y

b. Raise each element of x to the power specified by the corresponding element in y.

c. Divide each element of y by the corresponding element in x

d. Multiply each element in x by the corresponding element in y, calling the result "z".

e. Add up the elements in z and assign the result to a variable called "w".

f. Compute x'*y - w and interpret the result

Create a vector x with the elements (don’t manually assign values; use MATLAB

commands).

 a. 2, 4, 6, 8

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 29

b. 10, 8, 6, 4, 2, 0, -2, -4

c. 1, 1/2, 1/3, 1/4, 1/5

d. 0, 1/2, 2/3, 3/4, 4/5

Create a vector x with the elements,

 xn = (-1)n+1/(2n-1)

 Add up the elements of the version of this vector that has 100 elements.

Given a vector, t, of length n, write down the MATLAB expressions that will correctly

compute the following:

a. ln(2 + t + t2)

b. et(1 + cos(3t))

c. cos2(t) + sin2(t)

d. tan-1(1) (this is the inverse tangent function)

e. cot(t)

f. sec2(t) + cot(t) - 1

Test that your solution works for t = 1:0.2:2

Worksheet-V

The following exercises are meant to be answered by a single MATLAB command. The

command may be involved (i.e., it may use a number of parentheses or calls to functions)

but can, in essence, be solved by the execution of a single command. If the command is too

complicated, feel free to break it up over two or more lines.

1. Given x = [3 1 5 7 9 2 6], explain what the following commands "mean" by by

summarizing the net result of the command.

a. x(3) b. x(1:7) c. x(1:end) d. x(1:end-1)

e. x(6:-2:1) f. x([1 6 2 1 1]) g. sum(x)

2. Given the array A = [2 4 1 ; 6 7 2 ; 3 5 9], provide the commands needed to

a. assign the first row of A to a vector called x1

b. assign the last 2 rows of A to an array called y

c. compute the sum over the columns of A

d. compute the sum over the rows of A

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 30

e. compute the standard error of the mean of each column of A (NB. the standard error of

the mean is defined as the standard deviation divided by the square root of the number of

elements used to compute the mean.)

3. Given the arrays x = [1 4 8], y = [2 1 5] and A = [3 1 6 ; 5 2 7],

Determine which of the following statements will correctly execute and provide the result.

If the command will not correctly execute, state why it will not. Using the command whos

may be helpful here. a. x + y b. x + A c. x' + y d. A -

[x' y']

e. [x ; y'] f. [x ; y] g. A - 3

4. Given the array A = [2 7 9 7 ; 3 1 5 6 ; 8 1 2 5], explain the results of the following

commands:

a. A' b. A(:,[1 4]) c. A([2 3],[3 1])

d. reshape(A,2,6) e. A(:) f. flipud(A)

g. fliplr(A) h. [A A(end,:)] i. A(1:3,:)

j. [A ; A(1:2,:)] k. sum(A) l. sum(A')

m. sum(A,2) n. [[A ; sum(A)] [sum(A,2) ; sum(A(:))]]

5. Given the array A from problem 4, above, provide the command that will

a. assign the even-numbered columns of A to an array called B

b. assign the odd-numbered rows to an array called C

c. convert A into a 4-by-3 array

d. compute the reciprocal of each element of A

e. compute the square-root of each element of A

Worksheet-VI

1. Create a two random matrices M, N of order 6X6, whose elements consists from 1 to 100.

2. Using command delete the second row of the matrix M and name it as P

3. Using command delete the 6th column of the matrix N and name it as Q

4. Add the second column of M and to the first column of N

5. Convert the matrix M to column and row vectors

6. Using command create the matrix R consisting of maximum values of either M or N

7. Using command create the matrix S consisting of minimum values of either M or N

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 31

8. Using command create a matrix T by replacing all the elements above the main diagonal

of M by zeros

9. Using command create a matrix U by replacing all the elements below the main diagonal

of N by zeros

10. Perform the command cumprod(M), observe the output

11. Perform the command sort(M), observe the output

12. Perform the command sqrt(M), observe the output

13. Perform the command sqrtm(M), observe the output

14. Create the function 2() cos 2 /f x x x x   and (a) evaluate f(0), f(1), f(pi/2) (b)

Evaluate f(x) where x=[0 1 pi/2 pi]

15. Create the following functions:

 f(x) = x4-8x3+17x2-4x-20

 g(x) = x2-4x+4

 h(x) = x2-4x-5

(a) Evaluate f(x)-g(x)h(x) at x=3

(b) Evaluate f(x)-g(x)h(x) at x=[1 2 3 4 5]

(c) Evaluate f(x)/g(x) –h(x) for any x

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 32

3. PLOTTING

MATLAB not only helps us for calculation but also helps us in data analysis and
visualization by plotting graphs and waveforms. It provides a variety of functions for
displaying data as 2-D or 3-D graphics. The commands to produce simple plots are
surprisingly simple. For complicated graphs and special effects there are a lot of built-in
functions that enable the user to manipulate the graphics window in many ways.
For 2-D graphics, the basic command is:
 plot(xdata, ydata)
This command produces plot with xdata on the horizontal axis and ydata on the vertical
axis. To produce overlay plots you can specify any number of pairs of vectors as the
argument of the plot command.
Plot the curve y sinx over the range 0 2x  

>> x=linspace(0,2*pi,100);

>> y=sin(x);

>> plot(x,y)

>> grid on

>> xlabel('X-axis')

>> ylabel('Y-axis')

>> title('Sinx versus x’)
0 1 2 3 4 5 6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X-axis

Y
-a

x
is

Sinx versus x

If you execute the command stem(x,y) instead of plot(x,y), we get the following output

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X-axis

Y
-A

x
is

sinx versus x

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 33

Tools Available For Manipulating a Plot

One of the primary advantages of the use of MATLAB is the range of manipulation tools

available for use in a generated graph. The figure-1 shows the file menu where tools are

available for use in the generated figure plot. These can be used to make the graph effective

presentation aids and provide looks as required. One of the useful tools for manipulation of

graph insertion of data points in the plot. It can be done by using the Tools option in the file

menu bar. In the tools option there is a button Data Cursor which allows the section of a

point where the values of axes can be obtained and notified.

Also there are options on the line type and the colour of the graph which may be opted to

generate the plot by using syntax of the type plot(x,y,’óption’) . The following colors are

available as options.

b blue g Green
r red c Cyan
m magenta y , k yellow , black

Again a few symbol options are also available. The options are

. Point o circle x x-mark
+ Plus * star - Solid
s Square d diamond v triangle down
^ triangle up < triangle left > triangle right
p pentagon h hexagram : Dotted

Figure-1

If we execute the command fill(x,y,’g’) command, we get the following output (% ‘g’

represents green colour)

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 34

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X-axis

Y
-a

x
is

Sinx versus x

Plot the curve
sin x

y
x

 in the interval [-50,50]

>> x=linspace(-50,50,1000);

>> y=sin(x)./x;

>> plot(x,y)

>> grid on

>> xlabel('X-Axis')

>> ylabel('Y-Axis')

>> title('Sinx/x curve versus

x')

-50 -40 -30 -20 -10 0 10 20 30 40 50
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X-Axis

Y
-A

x
is

Sinx/x curve versus x

Also we get the following output with the following commands

>>x=linspace(-3*pi,3*pi);

>> y=sin(x)./x;

>> area(x,y)

>> hold on

>> x1=x(46:55);y1=y(46:55);

>> area(x1,y1,'facecolor','y')

-8 -6 -4 -2 0 2 4 6 8
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Plot sin(1/)y x x in the interval [-0.5,0.5]

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 35

>> x=linspace(-0.5,0.5,1000);

>> y=x.*sin(1./x);

>> plot(x,y)

>> grid on

>> xlabel('X-Axis')

>> ylabel('Y-Axis')

>> title('x*sin(1/x) curve

versus x')

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

X-Axis

Y
-A

x
is

x*sin(1/x) curve versus x

Overlay Plotting:

Plot the curves sin , 2sin , 3siny x y x y x   over the range 0 2x  

>> x=linspace(0,2*pi,100);

>> y1=sin(x);

>> y2=2*sin(x);

>> y3=3*sin(x);

>> plot(x,y1,x,y2,x,y3)

>> grid on

>> xlabel('X-Axis')

>> ylabel('Y-Axis')

>> title('Sinx,2Sinx,3Sinx

versus x')

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

X-Axis

Y
-A

x
is

Sinx,2Sinx,3Sinx versus x

Sinx

2Sinx

3Sinx

Plot
2 , 2 3 0y x x y    over the range [-3,3]

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 36

>> x=linspace(-3,3,100);

>> y1=x.^2;y2=1/2*(3-x);

>> plot(x,y1,x,y2)

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

X-axis

Y
-a

x
is

y=x2,x+2y-3=0 over[-3,3]

y=x2

x+2y-3=0

Plot 3y x x  for  = [-5 0 5 45] over a range of [-5 5] using function of two variables

 ,x

>> f = @(mu,x) mu*x-x.^3;

>> x = linspace(-5,5);

>> y= [f(-5,x) f(0,x) f(5,x) f(45,x)];

>> plot(x,f(-5,x),x,f(0,x),x,f(5,x),x,f(45,x))

>> grid

>> xlabel(‘x’)

>> ylabel('f(\mu,x)=\mu x-

x^3')

-5 -4 -3 -2 -1 0 1 2 3 4 5
-150

-100

-50

0

50

100

150

x

f(


,x
)=


 x
-x

3

Cycloids, Epicycloids & Hypocycloids:

Cycloids:

A cycloid is the curve traced by a point on the rim of a circular wheel as the wheel rolls
along a straight line without slipping. Equations in parametric form:

(sin)

(1 cos)

x a

y a

 



 

 

This is a curve described by a point P on a circle of radius a rolling on x-axis

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 37

Epicycloids:

In geometry, a epicycloids is a special plane curve generated by the trace of a fixed point on

the circumference of a small circle that rolls without slipping around a larger circle. It is

comparable to the cycloid but instead of the circle rolling along a line, it rolls on a circle.

If the smaller circle has radius r, and the larger circle has radius R = kr, then the parametric

equations for the curve can be given by either:

() () cos cos

() ()sin sin

R r
x t R r t r t

r

R r
y t R r t r t

r

 
    

 

 
    

 

or

 

 

() (1)cos cos (1)

() (1)sin sin (1)

x t r k t r k t

y t r k t r k t

   

   

If k is an integer, then the curve is closed, and has k cusps.

If k is a rational number, say k = p/q expressed in simplest terms, then the curve

has p cusps.

If k is an irrational number, then the curve never closes.

If k=1, we get Cardioid.

>>k=1;

>>t=0:0.01:2*pi;

>>x=(k+1)*cos(t)-cos((k+1)*t);

>>y=(k+1)*sin(t)-sin((k+1)*t);

>>fill(x,y,'y')

If k=2.1(21/10), we get curve with 21 cusps.

>>k=2; t=0:0.01:20*pi;

>>x=(k+1)*cos(t)-cos((k+1)*t);

>>y=(k+1)*sin(t)-sin((k+1)*t);

>>fill(x,y,'y')

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 38

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
-3

-2

-1

0

1

2

3

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

Hypocycloid

In geometry, a hypocycloid is a special plane curve generated by the trace of a fixed point

on a small circle that rolls within a larger circle. It is comparable to the cycloid but instead

of the circle rolling along a line, it rolls within a circle.

If the smaller circle has radius r, and the larger circle has radius R = kr, then the parametric

equations for the curve can be given by either:

() () cos cos

() ()sin sin

R r
x t R r t r t

r

R r
y t R r t r t

r

 
    

 

 
    

 

 or
 

 

() (1)cos cos (1)

() (1)sin sin (1)

x t r k t r k t

y t r k t r k t

   

   

If k is an integer, then the curve is closed, and has k cusps.

If k is a rational number, say k = p/q expressed in simplest terms, then the curve

has p cusps.

If k is an irrational number, then the curve never closes.

For example, if k=4, then we get the curve has four cusps(asteroid).

>>k=4;

>>t=0:0.01:2*pi;

>>x=(k-1)*cos(t)+cos((k-1)*t);

>>y=(k-1)*sin(t)-sin((k-1)*t);

>>fill(x,y,'y')

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

If k=2.1 (=21/10), then curve has 21 cusps.

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 39

>>k=2.1;

>>t=0:0.01:2*pi;

>>x=(k-1)*cos(t)+cos((k-

1)*t);

>>y=(k-1)*sin(t)-sin((k-

1)*t);

>>fill(x,y,'y')

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Sub-Dividing a Figure Window

While dealing with multiple graphs at the same time, it becomes easy to project the plots

within the same figure window. It requires a sub-division of the figure window so that

different segments of the figure window show different plots. For that MATLAB provides an

option called subplot(m,n,o) with m and n represents total number of sub-divisions formed

out of the figure window the count of which is kept by o. These two variables m and n

effectively can be considered to be like a matrix of m rows and n columns.

The following commands gives four curves in same figure window.

>>x=-2:0.01:2;

>> y=x.^2; y1=x.^3; y2=1./x; y3=exp(x);

>> subplot(2,2,1), plot(x,y)

>> subplot(2,2,2), plot(x,y1)

>> subplot(2,2,3), plot(x,y2)

>> subplot(2,2,4), plot(x,y3)

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 40

-2 -1 0 1 2
0

1

2

3

4
y=x2

-2 -1 0 1 2
-10

-5

0

5

10
y=x3

-2 -1 0 1 2
-100

-50

0

50

100
y=1/x

-2 -1 0 1 2
0

2

4

6

8
y=exp(x)

To create a subplot with one large plot axis on the left side and two small plot axes in a

column on the right, the following may be used.

>> subplot(2,2,2), ezplot('sin(x)')

>> subplot(2,2,4), ezplot('cos(x)')

>> subplot(2,2,[1 3]), ezplot('sin(x)^2./x.^2')

The resulting figure is as below

The ezplot() is an easy to use function plotter. The syntax ezplot(fun) plots the function

over the default domain -2*pi<2*pi.

Polar Plotting:

In mathematics, the polar coordinate system is a two dimensional coordinate system in
which each point on a plane is determined by a distance from a reference point and
an angle from a reference direction. The command [theta, rho] = cart2pol(x,y) transforms
corresponding elements of the two-dimensional Cartesian coordinate arrays x and y into
polar coordinates theta and rho. The command [theta,rho,z] = cart2pol(x,y,z) transforms
three-dimensional Cartesian coordinate arrays x, y, and z into cylindrical
coordinates theta, rho, and z. Similarly the command [x, y] =
pol2cart(theta,rho) transforms corresponding elements of the polar coordinate
arrays theta and rho to two-dimensional Cartesian coordinates and the command [x,y,z] =
pol2cart(theta,rho,z) transforms corresponding elements of the cylindrical coordinate
arrays theta, rho, and z to three-dimensional Cartesian, or xyz, coordinates.
The syntax polar(theta, rho) makes a plot using polar co-ordinates of the angle theta,
versus the radians rho. For example

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 41

>> t=linspace(0,2*pi,100);

>> r=2*cos(t);

>> polar(t,r)

>> hold on

>> r1=2*sin(t);

>> polar(t,r1)

>> hold on

>> r2=-r;

>> polar(t,r2)

>> hold on

>> r3=-r1;

>> polar(t,r3)

 0.5

 1

 1.5

 2

30

210

60

240

90

270

120

300

150

330

180 0

Plotting of sin & cosr a n r a n   :

If n is an even number, both the equations produces a curve with n petals and if n is an odd

number then the equations produces a curve with 2n petals.

>>t=linspace(0,2*pi);

>>r=cos(4*t);

>>polar(t,r)

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

>>t=linspace(0,2*pi);

>>r=cos(3*t);

>>polar(t,r)

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

>>t=linspace(0,2*pi);

>>r=sin(4*t);

>>polar(t,r)

>>t=linspace(0, pi);

>>r=sin(3*t);

>>polar(t,r)

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 42

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Limacons & Cardioids

Equations cos , cos , sinr a b r a b r a b        and sinr a b   will produce Limacons. If a<b,

the graph is a Limacon with an inner loop and if a>b, the graph is a dimpled Limacon.

When a=b, the graph is a special case of the Limacon. It is called a Cardioid.

>>t=linspace(0,2*pi);

>>r=2+3*cos(t);

>>polar(t,r)

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

>>t=linspace(0,2*pi);

>>r=5+4*cos(t);

>>polar(t,r)

 2

 4

 6

 8

 10

30

210

60

240

90

270

120

300

150

330

180 0

>> t= linspace(0,2*pi);

>> r=1+cos(t)

>> polar(t,r)

>> t= linspace(0,2*pi);

>> r=1-sin(t)

>> polar(t,r)

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 43

 0.5

 1

 1.5

 2

30

210

60

240

90

270

120

300

150

330

180 0

 0.5

 1

 1.5

 2

30

210

60

240

90

270

120

300

150

330

180 0

3-D Plotting

A function named plot3() can be used to generate 3-D plots in MATLAB. If the function is

used as plot3(x,y,z), the vectors are plotted against the rows or columns of the matrix,

depending whether the vectors ‘ lengths equal the number of rows or the number of

columns. If the lengths are different an error will be created.

>> t=0:pi/70:15*pi;

>> x=cos(2*t); y=sin(2*t);

>> plot3(x,y,t)

>> grid on

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
0

10

20

30

40

50

Helix with scatter3() command

>> t=0:pi/30:15*pi;

>> x=cos(2*t); y=sin(2*t);

>> scatter3(x,y,t)

>> grid on

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0

10

20

30

40

50

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 44

Example:

>>t = 0:pi/500:40*pi;

>>x = (3 + cos(sqrt(32)*t)).*cos(t);

>>y = sin(sqrt(32) * t);

>>z = (3 + cos(sqrt(32)*t)).*sin(t);

>>plot3(x,y,z)

-4 -3 -2 -1 0 1 2 3 4-1
0

1

-4

-3

-2

-1

0

1

2

3

4

Surface Plot:

At times a programmer has to deal with ordered pairs, i.e., data that is dependent on both x

and y values as z=f(x,y). This can be done by computing a z value for each x,y pair which in

effect is to iterate through a nested loop, but one of the major advantages of MATLAB is

that it can deal with matrices without resorting to looping. If the data available is in a

matrix format this can be done easily. If data is assigned to x and y considered to be vectors,

MATLAB provides a useful function called meshgrid that can be used to simplify the

generation of X and Y matrix arrays used in 3-D plots. It is invoked using the form

[X,Y]=meshgrid(x,y), where x and y are vectors that help specify the region in which co-

ordinates, defined by element pairs of the matrices X and Y, will lie. The matrix X will

contain replicated rows of the vector X, while Y will contain replicated columns of vector y.

One of the basic surface plotting is mesh. The syntax is mesh(X,Y,Z). mesh(X,Y,Z) draws a

wireframe mesh with color determined by Z so color is proportional to surface height. If X

and Y are vectors, length(X) = n and length(Y) = m, where [m,n] = size(Z). In this case,

(X(j), Y(i), Z(i,j)) are the intersections of the wireframe grid lines; X and Y correspond to

the columns and rows of Z, respectively. If X and Y are matrices, (X(i,j), Y(i,j), Z(i,j)) are the

intersections of the wireframe grid lines.

Consider the following plot. It creates many criss-crossed lines that look like a net spread

over the surface defined by the data points.

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 45

>>[X,Y] = meshgrid(-3:.125:3);

>>Z = peaks(X,Y);

>>mesh(X,Y,Z)

>>axis([-3 3 -3 3 -10 10])

>>colorbar

-2

0

2

-2

0

2

-10

-5

0

5

10

-6

-4

-2

0

2

4

6

8

Another basic surface plotting is surf. The syntax is surf(X,Y,Z).

Example: Plot Elliptic paraboloid z=x2+y2 in -3<x, y <3

>>[x y]=meshgrid(-3:0.1:3);

>>z= x.^2+y.^2;

>>surf(x,y,z)

-4

-2

0

2

4

-4

-2

0

2

4
0

5

10

15

20

Plot Hyperbolic paraboloid z=x2+y2 in -3<x, y <3

>>[x y]=meshgrid(-3:0.1:3);

>>z= x.^2-y.^2;

>>surf(x,y,z)

>> colorbar

Note: Colorbar acts as a legend

for colors

 -4

-2

0

2

4

-4

-2

0

2

4

-10

-5

0

5

10

-8

-6

-4

-2

0

2

4

6

8

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 46

We can add different maps, for example colormap winter, colormap spring , colormap jet

etc., (Try), also we can fix the levels (m) of colors with the commands colormap spring(m),

colarmap jet(m) etc., (Try)

Plot

2 2

4

cos .cos .

x y

z x y e

  
 
 
  ; -5<x, y<5

>> [x y]=meshgrid(-5:0.1:5);

>> z=cos(x).*cos(y).*…

 exp(-sqrt(x.^2+y.^2)/4);

>> surf(x,y,z)

>> axis(‘off’)

Plot
2 2

5

1
z

x y




 
; -3<x,y<3

>> x=linspace(-3,3,50);

>> y=x;

>> [x y]=meshgrid(x,y);

>> z=-5./(1+x.^2+y.^2);

>> waterfall(z)

>> hidden off 0
10

20
30

40
50

0

20

40

60
-5

-4

-3

-2

-1

0

Plot

2 2

4

cos .cos .

x y

z x y e

  
 
 
  ; -5<x, y<

using surfc command

>> [x y]=meshgrid(-5:0.1:5);

>> z=cos(x).*cos(y).*…

 exp(-sqrt(x.^2+y.^2)/4);

>> surf(x,y,

-5

0

5

-5

0

5
-0.5

0

0.5

1

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 47

Worksheet-VII

1. Plot f(x) and
()

() ()

f x

g x h x
over [5 5]x  where f(x), g(x) and h(x) are in problem number

15, worksheet VI.

2. Plot y=cosx and
2 2

1
2 24

x x
z    for 0 x  

3. Plot y= sinx; y=x and
3 5

6 150

x x
z x   in 0 x  

4. Plot 2 2sin sinz x y  in –pi/2<x,y<pi/2

5. Plot
2 2

2 2

()xy x y
z

x y





 in -3<x,y<3

6. Plot z= sinx+cosy in 0<x,y <10

7. Plot the contour plot

2 2

4cos cos

x y

z x ye




 in -5 < x, y<5 using the command surfc(z)

8. Plot the above with the command surfl(z) . (Use commands ‘shading interp’ and

colormap hot commands to get different colours).

Hint: The command ‘shading interp’ gets rid of black lines in the surface plot

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 48

4. MATLAB PROGRAMMING

MATLAB provides its own language, which incorporates many features from C. In some

regards, it is a higher-level language than most common programming languages, such as

Pascal, Fortran, and C, meaning that you will spend less time worrying about formalisms

and syntax. For the most part, MATLAB’s language feels somewhat natural.

Disp, Input and Fprint Commands:

Disp Command:

The general form of disp for a numeric variable is

disp(variable)

When you use disp, the variable name is not displayed, and you don’t get a line feed before

the value is displayed, as you do when you enter a variable name on the command line

without a semi-colon. disp generally gives a neater display.

>> x=2

x =

 2

>> disp(x)

 2

You can also use disp to display a message enclosed in single quotes (called a string). Single

quotes which are part of the message must be repeated, e.g.

>> disp('Srinivas, ’’What is Matlab?’’')

Srinivas, ’’What is Matlab?’’

To display a message and a numeric value on the same line use the following trick:

>> x = 2;

>> disp(['Your value is ',num2str(x)])

Your value is 2

You can display more than one number on a line as follows:

disp([x y z])

The square brackets create a vector with three elements, which are all displayed.

Input Command

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 49

The input function has the following format

n=input('Enter the value of n')

When we run a program containing input statement, it will prompt the message inside the

single quote and then wait for the user to give input values. As soon as user presses return

key after entering the value, the value will be assigned to the variable n. Let us write a

simple program on command line.

>> n=input('Enter the value of n\n') % \n to introduce a new line

Enter the value of n

6

n =

 6

>> n=input('Enter the value of n\n')

Enter the value of n

[4 5 6;2 0 3]

n =

 4 5 6

 2 0 3

fprintf Command

It is used for writing formatted data to a file or on screen similar to fprintf in C language.

However, we shall mainly discuss here how fprintf can produce formatted output on

display screen.

It has the following format

fprintf (format_specifier, list_of_variables)

which writes or prints the values of variables in the list on screen in the format specified by

format-specifier string. The format-specifier symbols are written with the % preceding

them. The following is a list of commonly used format-specifiers

Format

symbol

Description

d For an integer value

u For an unsigned integer

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 50

f For a floating point integer

e For a number in exponential number

g For an exponential or floating notation which

ever suits best

The format-specifiers are to be enclosed within a single quote. We have to provide

matching format-specifier for the data to be printed. Otherwise, wrong or undesired output

will be displayed. Also, all format-specifiers listed above except the string-specifier can be

preceded by an integer indicating the width attribute. For example, %3d denotes 3 spaces

are reserved for an integer value. For floating point format-specifiers, such as f,e and g, in

addition to width attribute, it has another attribute known as precision attribute. So, a

floating format-specifier is in general can be written as %w.p, where w denotes the width

of spaces to be reserved for the floating point number, p denotes the number spaces out of

w to be set for precision p. So, p can’t be greater than w. If so, it is ignored and the default

width is used. For example

a=10;

>> fprintf('The value of a is %d \n',a)

The value of a is 10

Note: \n in the string to introduce new line

One more example is

>> fprintf('The square of %d is %d \n',a,a^2)

The square of 10 is 100

fprintf('%s proved that square of %d is %d \n','Srinivas',a,a^2)

Srinivas proved that square of 10 is 100

Programs

Example 1: Write a MATLAB program to find a factorial of a number?

>> n=1:10;

>> fact=prod(n)

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 51

Example 2: Write a MATLAB program that returns the sequence consisting of square of the

first 50 even numbers, and identify and display the first, fifth, and tenth element of the

sequence.

>> n=0:2:98;

>>sq_even=n^.2

>> sq_even(5) % To identify 5th element

Introduction to M-file Scripts:

A script file is usually a sequence of executable commands typed and saved in a file with

extension .m which would indicate that it is a MATLAB program file. MATLAB has another

form of program called function which is also saved in a filename with extension .m. When

a script file is created, the filename of the script file becomes command. That is, we can

execute the script file by typing only the filename, i.e., all the executable commands in the

file will be automatically executed in same sequence they are written in the file. So, once a

script file has been made for a problem we need to type only the filename to find its

solution whenever required.

Creating, Saving and Running an M-file:

We can type in your program code using any text editor or using the MATLAB

Editor/Debugger. Writing program codes in the Editor/Debugger is easier and handy as it

has special facilities to edit and debug the file. We can create a new blank M-file for writing

code in various ways. One way is simply by typing edit in the command window as

>>edit

This will open new M-file in the editor window as shown below

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 52

Another way is just by clicking the New M-file icon from the toolbar of the command

window. Or, select File menu and from the dropdown menu select New and then select M-

file. When a new window is opened, we can type program codes in it.

Once we open a new file in editor window, we can save it at any time, just at the beginning

or at very end of writing the program code or in the middle of writing the program. Most

often we save it in the middle or after we finish typing the code. There are two save options

available: Save and Save as. Save as option allows us to save the program in any directory

and Save will save the file in the current working directory. In either case, the Save dialog

box will appear and we have to enter appropriate file name. This filename will be used as

command when running the program. Hence, a suitable name may be given to remind us of

about the purpose of the file.

Once a program file is saved, we can run it easily in different ways. We can directly run the

program from the editor window by clicking the save and run icon present in the toolbar. If

there is a error, the line number and accompanying error message will be displayed.

Modify if there is any syntax error, then save and run it. If there is no error, it should run

properly. Once a script file is tested OK, then its filename becomes command. We can run

the program by typing its filename in the command window.

Writing & Executing the Script File

Open a new editor and type the following lines as shown below. Save the file with suitable

name and run the program

clc

n=input(‘Enter the Value of n=’);

fact=prod(1:n);

fprintf(‘The factorial value of %d is %d\n’, n,fact)

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 53

 If-end Statement

The syntax and format of the simplest form of the if-end statement is as follows

if

 <condition>

 <statements>

end

Only one decision-making <condition> is used, and if this <condition> is true, the

<statements> are executed, followed by the end(exit)

However, if the <condition> is false, then the <statements> are not executed, followed by

the end(exit).

The if-end statement can be expanded to include two different paths by executing two

different sets of statements based on a single decision-making condition.

if

 <condition>

 <statements-1>

else

 <statements-2>

end

Meaning that if<condition> is true, then<statements-1> is executed followed by the

end(exit); but if <condition> is not true, then <statements-2> is executed followed by the

end(exit).

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 54

A multiple path can be set based on multiple decision-making conditions by using the

general form of the if-end statement. The syntax and format are as follows:

if

 <condition-1>

 <statements-1>

elseif

 <condition-2>

 <statements-2>

elseif

 <condition-3>

 <statements-3>

elseif

 <condition-4>

 <statements-4>

 .
.

 .
else

 <statements-n>

end

Meaning the if<condition-1> is true, then the <statement-1> is executed followed by the

end(exit); but if <condition-1> is not true, then MATLAB checks if <condition-2> is true; if

it is true, then <statement-2> is executed followed by the end(exit), otherwise the

<condition-3> is tested, and so on; if none of the n-1 conditions are true, then MATLAB

executes <statement-n> followed by end(exit).

for-end Statement

The syntax of for-end statement as follows:

for <range>

 <statements>

end

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 55

referred as the for-end statement is used to create a loop that executes repetitively the

<statements> a fixed number of times based on the specified <range>. The specified

<range> is frequently given by a vector or a matrix.

System of Linear Equations

GAUSS ELIMINATION METHOD
Problem:-01
Solve the system of equations by Gauss eliminations x+2y+z=3, 2x+3y+3z=10, 3x-
y+2z=13.
Solution:-
The given system of equations are x+2y+z=3, 2x+3y+3z=10, 3x-y+2z=13.

The corresponding matrix form AX=B is

















































 13

10

3

213

332

121

z

y

x

Where A=


















































 13

10

3

,&

213

332

121

B

z

y

x

X

Let us consider the augmented matrix (A,B)

(A,B)=

















 13

10

3

213

332

121

(A,B)

133

122

)3(

)2(

4

4

3

170

110

121

RRR

RRR
























(A,B)

233)7(24

4

3

800

110

121

RRR 



















The equations corresponding to the above matrix given by
 x+2y+z=3
 -y+z=4
 -8z=-24.
Back substitution method, we get x=2, y=-1, z=3.

MATLAB Code for Gauss Elimination Method:
a=[1 2 1 3;2 3 3 10;3 -1 2 13];

% With A(1,1) as pivot element

k=a(2,1)/a(1,1);

a(2,:)=a(2,:)-k*a(1,:);

k=a(3,1)/a(1,1);

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 56

a(3,:)=a(3,:)-k*a(1,:);

% With A(2,2) as pivot element

k=a(3,2)/a(2,2);

a(3,:)=a(3,:)-k*a(2,:);

a

%% Back Substituion

x=ones(3,1);

x(3)=a(3,end)/a(3,3);

x(2)=(a(2,end)-a(2,3)*x(3))/a(2,2);

x(1)=(a(1,end)-a(1,2)*x(2)-a(1,3)*x(3))/a(1,1);

Sol=x

MATLAB Code for Gauss Jordon Method

a=[1 2 1 3;2 3 3 10;3 -1 2 13];

% With A(1,1) as pivot element

k=a(2,1)/a(1,1);

a(2,:)=a(2,:)-k*a(1,:);

k=a(3,1)/a(1,1);

a(3,:)=a(3,:)-k*a(1,:);

% With A(2,2) as pivot element

k=a(1,2)/a(2,2);

a(1,:)=a(1,:)-k*a(2,:);

k=a(3,2)/a(2,2);

a(3,:)=a(3,:)-k*a(2,:);

% With A(3,3) as pivot element

k=a(2,3)/a(3,3);

a(2,:)=a(2,:)-k*a(3,:);

k=a(1,3)/a(3,3);

a(1,:)=a(1,:)-k*a(3,:);

%% Making diagonal elements as unit

a(1,:)=a(1,:)/a(1,1);

a(2,:)=a(2,:)/a(2,2);

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 57

a(3,:)=a(3,:)/a(3,3);

%% Solution

Solution_X=a(:,end)

Exercise:- Solve the following problems by both Gauss –elimination & Gauss Jordan method
1) 2x+3y-z=5, 4x+4y-3z=3, and 2x-3y+2z=2 (Ans. x=1,y=2,z=3)
2) 5x+y+z+t=4, x+7y+z+t=12, x+y+6z+t=-5, x+y+z+4t=-6 (Ans x=1,y=2,z=-1, t=-2)
3) x+y+z+w=2, 2x-y+2z-w=-5, 3x+2y+3z+4w=7, x-2y-3z+2w=5. (Ans x=0,y=1, z=-1,
w=2)

Numerical Integration:

The process of finding a definite integral ()

b

a

f x dx from a set of tabulated values (,)i ix y ;

i=0,1,..n, where yi =f(xi), xo=a and xn =b is called numerical integration. This process when

applied to a function of a single variable is called quadrature.

Let us divide the interval (,)a b into n sub- intervals of width h(=(b-a)/n) so that

0 1 0, ,... nx a x a h x x nh b     

Trapezoidal Rule:

0 1 2 1() [() 2(...)]
2

b

n n

a

h
f x dx y y y y y     

Problem: Evaluate
6

2

0
1

dx

x
 using Trapezoidal rule, dividing the interval into 6 equal parts.

Solution:

Here n=6; a=0; b=6. Therefore h=(b-a)/n=1.

x 0 1 2 3 4 5 6

y=f(x) 1 0.5 0.2 0.1 0.0588 0.0385 0.027

By Trapezoidal rule

6

2

0
1

dx

x
= 0 6 1 2 3 4 5[() 2()]

2

h
y y y y y y y     

 =1.1408

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 58

MATLAB Code for Trapezoidal Rule:

f =@(x) 1./(1+x.^2);

a=0; b=6; n=6;

h=(b-a)/n;

xi=a:h:b;

fa = f(xi(1));

fb = f(xi(end));

fremain = f(xi(2:end-1))

s=h/2*((fa+fb)+2*sum(fremain))

Simpson’s 1/3 Rule:

0 1 3 1 2 4 2() [() 4(...) 2(...)]
3

b

n n n

a

h
f x dx y y y y y y y y        

Problem: Evaluate
6

2

0
1

dx

x
 using Simpson’s 1/3 rule, dividing the interval into 6 equal parts.

Solution:

Here n=6; a=0; b=6. Therefore h=(b-a)/n=1.

x 0 1 2 3 4 5 6

y=f(x) 1 0.5 0.2 0.1 0.0588 0.0385 0.027

By Simpson’s 1/3 rule

6

2

0
1

dx

x
= 0 6 1 3 3 5 2 4[() 4() 2()]

3

h
y y y y y y y y      

 =1.3662

MATLAB Code for Simpson’s 1/3rd Rule

f =@(x) 1./(1+x.^2);

a=0; b=6; n=6;

h=(b-a)/n;

xi=a:h:b;

fa = f(xi(1));

fb = f(xi(end));

feven = f(xi(3:2:end-2));

fodd = f(xi(2:2:end));

s=h/3*(fa+2*sum(feven)+4*sum(fodd)+fb)

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 59

MATLAB Code for Simpson’s 3/8th Rule

f=@(x) (1./(1+x.^2));

a=0; b=1;n=6;

h=(b-a)/n;

x=a:h:b;

fa=f(x(1));

fb=f(x(end));

f_3m=f(x(4:3:end-3));

frem=f(x(2:end-1));

s=(3*h/8)*((fa+fb)+3*sum(frem)-sum(f_3m))

Algebraic and Transcendental Equations

Bisection Method

MATLAB Code for Bisection Method

f=@(x) x-cos(x);

a=0;b=1; % f(a)<0 ; f(b)>0

for i=1:14

 c=(a+b)/2;

 f_value(i)=f(c);

 if f(c)>0

 b=c;

 else

 a=c;

 end

end

root=c

er=f_value-f(c);

plot(er, ':.') % Error Plotting

Newton Raphson Method
Let x=x0 be an approximate root of the equation f(x)=0 and x=x1 be the exact root such

that x-x0 =h is small. The Newton –Rapshon formula to find a better approximation to x1 is

1
2 1

1

()

()

f x
x x

f x
 



IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 60

 Generally,
1

()

()

i
i i

i

f x
x x

f x
  



Problem:

Find by Newton-Raphson method, the real root of the equation 3 cos 1x x 

Solution:

Let () 3 cos 1f x x x   , then () 3 sinf x x  

f(0)=-2 <0

f(1)=1.4597>0

A root is lies between 0 and 1.

By Newtons- Raphson method,

x1=0.62002

x2=0.60712

x3=0.60710

x4= 0.60710

Hence the root is 0.60710.

MATLAB Code for Newton Rapshon Method:

f=@(x) 3*x-cos(x)-1;

dif=@(x) 3+sin(x);

y=0;

for i=1:10

 a(i)=y;

 f_value(i)=f(y);

 x=y-(f(y)/dif(y));

 y=x;

end

root=y

er=f_value-f(y)

plot(er,'.:')

IM.Sc., _MATLAB Programming-Lecture Notes

Sub.Code: MMAF181P50 Page 61

Bibliography

 Introduction to MATLAB, K.Srinivasa Rao, IMRF International Publications

 Getting Started with MATLAB by Rudra Pratap, Oxford University Press

 Practical MATLAB-Basics for Engineers, CRC Press, Misza Kalechman

 Engineering Problem solving with MATLAB, D.M.Etter, Printice-Hall

 A MATLAB Primer, Kermit Sigmon , Timothy A. Davis.

 MATLAB Demystified, Basic Concepts and Applications, K K Sarma, Vikas Publishing

House Pvt Ltd

 Applied Numerical Methods with MATLAB by Steven C. Chapra, 3rd Edition, McGrawHill

 Numerical Analysis using MATLAB and Spread sheets by Steven T. Karris, 2nd edition,

Orchard Publications

 An Introduction to MATLAB, by David F. Griffiths, Department of Mathematics,

University of Dundee

Useful MATLAB Website:

 http://www.mathworks.in/

Critical evaluation and suggestions for improvement of this

material will be highly appreciated and gratefully acknowledged.

 Dr.K.Srinivasa Rao
Professor & Head

Department of Mathematics
SCSVMV University, Kanchipuram

raokonda@yahoo.com
96666 95525

http://www.mathworks.in/
mailto:raokonda@yahoo.com

